
(i) Proxy representation computation (iii) 3D Body Sampling and Projection
• SMPL meshes are sampled from from the predicted distribution 

using rejection sampling.
• Rejection sampling is made differentiable using the re-

parameterisation trick à enables sample re-projection loss.

• Input image is converted into an edge + 2D joint 
heatmap representation.

• Bridges the gap between synthetic training data (with 
diverse shapes and poses) and real test data.
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Problem
Monocular 3D human shape and pose estimation is ill-posed.
• Multiple 3D bodies may explain a given 2D image.

Image SPIN[1] Ours: Multiple 3D reconstruction samples Per-Vertex Uncertainty
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Our approach: predict probability distributions over body shape and pose.
• Sample many plausible 3D reconstructions and estimate 3D uncertainty.
• Leverage the human body’s hierarchical kinematic tree structure.
• Recognise that 3D joint rotations (i.e. pose) lie in SO(3)à non-linear manifold.

Method
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Preliminary: SMPL[2]
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SMPL[1]

3D Vertices
• Body model mapping shape and pose 

parameters to 3D mesh.
• Pose is parameterised by the 3D 

rotation (𝑹!) of each joint relative to 
its parent in the kinematic tree.

Preliminary: Matrix-Fisher 
Distribution[3]

• 3D joint rotations 𝑹! lie in SO(3).
• Matrix-Fisher distribution over SO(3):

𝑝 𝑹 𝑭 =
1

𝑐(𝑭)
exp tr 𝑭"𝑹 = 𝑀(𝑹; 𝑭)

• Parameter 𝑭 ∈ ℝ#×# can be regressed 
by a neural network[4].

• Proper SVD: 𝑭 = 𝑼𝑺𝑽"

• Mode: 𝑼𝑽"

• Principal Axes: columns 
of 𝑼

• Dispersion: singular 
values 𝑺

𝑭 = diag[25, 5, 1]

Results

Comparison with recent 3D human shape and pose distribution estimation methods 
• 3D shape (PVE-T-SC) and pose (MPJPE/MPJPE-PA) metrics are computed using the minimum 

error sample[5] for each test image in the 3DPW and SSP-3D datasets. 
• Motivation: ground-truth 3D body only represents one plausible 3D solution out of many. 

• 3D metrics improve with increasing number of samples àour predicted distribution is able to 
model the 3D ground-truth as a possible sample.

(ii) 3D Shape and Pose 
Distribution Prediction

I

Deep neural network outputs:
(1) Gaussian distribution over 

shape parameters

(2) Matrix-Fisher distribution 
over 3D joint rotations

Each joint’s distribution 
parameter ( ) is 
conditioned on its 
parents’ modes, principal 
axes and dispersions
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