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Motivation
Multiple 3D human reconstructions can 
correspond to a 2D image due to depth 

ambiguity, occlusion and truncation. 

Motivates a probability distribution 
over 3D pose and shape, which 

should exhibit 3 properties…
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Trade-off in current probabilistic methods[1,2]
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We use the SMPL[3] 3D body model.

3D rotation of each body-part about its parent joint. 
Body-part rotations belong to the Lie group 1SO(3).

Full-body pose is factorised 
into per-body-part rotation 

distributions conditioned on 
ancestor body part rotations.

Aggregated into 
context 

Per-body-part distributions are normalising 
flows on the Lie algebra blahblah.

These are pushed through the exp map 
onto a hbla using change-of-variables. Rodrigues’ rotation formula

We predict a distribution over SMPL pose 
and shape conditioned on a 2D input  X.
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Results
2D input-consistency and 3D sample diversity of 
probabilistic pose and shape methods on 3DPW. 
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References
Diverse in 3D because we:
(i) Use expressive distribution models (flows).
(ii) Don’t use ill-posed loss functions (e.g. 3D MSE).

Input-consistent in 2D because we:
(i) Use kinematic tree to factorise body pose.
(ii) Consider domain of body-part rotations  SO(3)  .

Min. sample MPJPE on 3DPW Cropped 

Faster rate of improvement !
3D ground-truth has higher likelihood 

under the predicted distribution.
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Comparison between HuManiFlow and recent deterministic 3D pose and shape predictors. HuManiFlow handles 
occlusion and truncation. Per-vertex variance indicates directional uncertainty ! useful for downstream tasks.
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