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= Aim: Predict 3D body shape and pose from a group of
unconstrained images of a subject.

= No constraints are imposed on the subject’s pose, camera
viewpoint or background and lighting conditions between

iImages (unlike video or multi-view methods).

= We estimate (i) a single identity-dependent body shape that
Is consistent across all images and (ii) a different body pose
for each image.

= Current approaches provide good pose estimates but body
shapes are inaccurate or inconsistent.
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= We predict more accurate and consistent body shapes by
aggregating the visual shape information present in
multiple images of a subject.
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(ii) Body shape (f) and pose (0)
distribution prediction

(i) Proxy representation
computation
Group of input images are converted .

into silhouette + 2D joint heatmap
representations are using off-the-

A deep neural network outputs Gaussian -
distributions over SMPL pose and shape
parameters, conditioned on the inputs.
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(ili) Probabilistic body shape
combination
Body shape distributions from each

iInput are probabilistically combined
into a final distribution.
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Parametric body model mapping
mapping pose (0) and body shape
(B) parameters to 3D vertices. = A negative log-likelihood loss is used for

training.
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= Dataset of tape-measured humans is used to evaluate
probabilistic combination (PC) in terms of measurement RMSE.

PC outperforms current single-image approaches, as well as
naive-averaging ("Mean”) of outputs from those approaches.



